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Abstract

Support Vector Machines (SVMs) are investigated for
visual gender classification with low resolution “thumb-
nail” faces (21-by-12 pixels) processed from 1,755 images
from the FERET face database. The performance of SVMs
(3.4% error) is shown to be superior to traditional pattern
classifiers (Linear, Quadratic, Fisher Linear Discriminant,
Nearest-Neighbor) as well as more modern techniques
such as Radial Basis Function (RBF) classifiers and large
ensemble-RBF networks. SVMs also out-performed human
test subjects at the same task: in a perception study with 30
human test subjects, ranging in age from mid-20s to mid-
40s, the average error rate was found to be 32% for the
“thumbnails” and 6.7% with higher resolution images. The
difference in performance between low and high resolution
tests with SVMs was only 1%, demonstrating robustness and
relative scale invariance for visual classification.

1 Introduction

This paper addresses the problem of classifying gender
from thumbnail faces in which only the main facial regions
appear (without hair information). The motivation for using
such images is two fold. First, hair styles can change in
appearance easily and frequently. Therefore, in a robust
face recognition system face images are usually cropped
to keep only the main facial regions. It has been shown
that betterrecognitionrates can be achieved using hairless
images [10]. Second, we wished to investigate the minimal
amount of face information (resolution) required to learn
male and female faces by various classifiers. Previous
studies on gender classification have used high resolution
images with hair information and relatively small datasets
for their experiments. In our study, we demonstrate that
SVM classifiers are able to learn and classify gender from
a large set of hairless low resolution images with very high
accuracy.

In recent years, SVMs have been successfully applied
to various tasks in computational face-processing. These
include face detection [16], face pose discrimination [14]

and face recognition [18]. In this paper, we use SVMs
for gender classification of thumbnail facial images and
compare their performance with traditional classifiers (e.g.,
Linear, Quadratic, Fisher Linear Discriminant, and Nearest
Neighbor) and more modern techniques such as RBF net-
works and large ensemble-RBF classifiers.

We also compare the performance of SVM classifiers
to that of human test subjects with both high and low
resolution images. Although humans are quite good at
determining gender from generic photographs, our tests
showed that they had difficulty with hairless high resolution
images. Nevertheless, the human performance at high
resolution was deemed adequate (6.5% error), but degraded
with low resolution images (31% error). SVM classifiers
showed negligible changes in their average error rate. In our
study, little or no hair information was used in both human
and machine experiments. This is in contrast to previous
results reported in the literature where almost all methods
used include some hair information in gender classification.

2 Background

Gender perception and discrimination has been investi-
gated from both psychological and computational perspec-
tives. Although gender classification has attracted much
attention in psychological literature [2, 5, 9, 17], relatively
few learning based vision methods have been proposed.

Gollombet al. [12] trained a fully connected two-layer
neural network, SEXNET, to identify gender from 30-by-
30 face images. Their experiments on a set of 90 photos (45
males and 45 females) gave an average error rate of 8.1%
compared to an average error rate of 11.6% from a study of
five human subjects. Cottrell and Metcalfe [7] also applied
neural networks for face emotion and gender classification.
The dimensionality of a set of 160 64-by-64 face images (10
males and 10 females) was reduced from 4096 to 40 with an
auto-encoder. These vectors were then presented as inputs
to another one layer network for training. They reported
perfect classification.1 Brunelli and Poggio [3] developed

1However one should note that a dataset of only 20 unique individuals
may be insufficient to yield statistically significant results.
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Figure 1. Gender classi�er

HyperBF networks for gender classification in which two
competing RBF networks, one for male and the other for
female, were trained using 16 geometric features as inputs
(e.g.,pupil to eyebrow separation, eyebrow thickness, and
nose width). The results on a data set of 168 images
(21 males and 21 females) show an average error rate of
21%. Using similar techniques as Golombet al. [12] and
Cottrell and Metcalfe [7], Tamuraet al. [20] used multi-
layer neural networks to classify gender from face images
at multiple resolutions (from 32-by-32 to 8-by-8 pixels).
Their experiments on 30 test images show that their network
was able to determine gender from 8-by-8 images with
an average error rate of 7%. Instead of using a vector
of gray levels to represent faces, Wiskottet al. [22] used
labeled graphs of two-dimensional views to describe faces.
The nodes were represented by wavelet-based local “jets”
and the edges were labeled with distance vectors similar
to the geometric features in [4]. They used a small set of
controlled model graphs of males and females to encode
“general face knowledge,” in order to generate graphs of
new faces by elastic graph matching. For each new face, a
composite reconstruction was generated using the nodes in
the model graphs. The gender of the majority of nodes used
in the composite graph was used for classification. The error
rate of their experiments on a gallery of 112 face images
was 9.8%. Recently, Guttaet al. [13] proposed a hybrid
classifier based on neural networks (RBFs) and inductive
decision trees with Quinlan’s C4.5 algorithm. Experiments
were conducted on 3000 FERET faces of size 64-by-72
pixels. The best average error rate was found to be 4%.

3 Gender Classifiers

A generic gender classifier is shown in Figure 1. An
input facial imagex generates a scalar outputf(x) whose
polarity – sign off(x) – determines class membership. The
magnitudekf(xk can usually be interpreted as a measure
of belief or certainty in the decision made. Nearly all
binary classifiers can be viewed in these terms; for density-
based classifiers (Linear, Quadratic and Fisher) the output
functionf(x) is a log likelihood ratio, whereas for kernel-
based classifiers (Nearest-Neighbor, RBFs and SVMs) the

output is a “potential field” related to the distance from the
separating boundary. We will now briefly review the details
of the various classifiers used in our study.

3.1 Support Vector Machines

A Support Vector Machine is a learning algorithm for
pattern classification and regression [21, 6]. The basic
training principle behind SVMs is finding the optimal
linear hyperplane such that the expected classification er-
ror for unseen test samples is minimized —i.e., good
generalization performance. According to the structural
risk minimization inductive principle [21], a function that
classifies the training data accurately and which belongs
to a set of functions with the lowest VC dimension [6]
will generalize best regardless of the dimensionality of the
input space. Based on this principle, a linear SVM uses a
systematic approach to find a linear function with the lowest
VC dimension. For linearly non-separable data, SVMs can
(nonlinearly) map the input to a high dimensional feature
space where a linear hyperplane can be found. Although
there is no guarantee that a linear solution will always exist
in the high dimensional space, in practice it is quite feasible
to construct a working solution.

Given a labeled set ofM training samples(xi; yi), where
xi 2 RN andyi is the associated label (yi 2 f�1; 1g),
a SVM classifier finds the optimal hyperplane that correctly
separates (classifies) the largest fraction of data points while
maximizing the distance of either class from the hyperplane
(the margin). Vapnik [21] shows that maximizing the mar-
gin distance is equivalent to minimizing the VC dimension
in constructing an optimal hyperplane. Computing the best
hyperplane is posed as a constrained optimization problem
and solved using quadratic programming techniques. The
discriminant hyperplane is defined by the level set of

f(x) =

MX

i=1

yi �i � k(x;xi) + b

where k(�; �) is a kernel function and the sign off(x)
determines the membership ofx. Constructing an optimal
hyperplane is equivalent to finding all the nonzero�i. Any
vectorxi that corresponds to a nonzero�i is a supported
vector(SV) of the optimal hyperplane. A desirable feature
of SVMs is that the number of training points which are
retained as support vectors is usually quite small, thus
providing a compact classifier.

For a linear SVM, the kernel function is just a simple
dot product in the input space while the kernel function in a
nonlinear SVM effectively projects the samples to a feature
space of higher (possibly infinite) dimension via a nonlinear
mapping function:

� : RN ! FM ; M � N



and then constructs a hyperplane inF . The motivation
behind this mapping is that it is more likely to find a linear
hyperplane in the high dimensional feature space. Using
Mercer’s theorem [8], the expensive calculations required
in projecting samples into the high dimensional feature
space can be replaced by a much simpler kernel function
satisfying the condition

k(x;xi) = �(x) � �(xi)

where� is the nonlinear projection function. Several kernel
functions, such as polynomials and radial basis functions,
have been shown to satisfy Mercer’s theorem and have
been used successfully in nonlinear SVMs. In fact, by
using different kernel functions, SVMs can implement a
variety of learning machines, some of which coincide with
classical architectures. Nevertheless, automatic selection
of the “right” kernel function and its associated parameters
remains problematic and in practice one must resort to trial
and error for model selection.

3.2 Radial Basis Function Networks

A radial basis function (RBF) network is also a kernel-
based technique for improved generalization, but it is based
instead on regularization theory [19]. A typical RBF
network withK Gaussian basis functions is given by

f(x) =
KX

i

wi G(x; ci; �
2

i
) + b

where theG is theith Gaussian basis function with center
ci and variance�2

i
. The weight coefficientswi combine

the basis functions into a single scalar output value, with
b as a bias term. Training a Gaussian RBF network for a
given learning task involves determining the total number of
Gaussian basis functions, locating their centers, computing
their corresponding variances, and solving for the weight
coefficients and bias. Judicious choice ofK, ci, and�2

i
,

can yield RBF networks which are quite powerful in classi-
fication and regression tasks. The number of radial bases
in a conventional RBF network is predetermined before
training, whereas the number for a large ensemble-RBF
network is iteratively increased until the error falls below
a set threshold. The RBF centers in both cases are usually
determined byk-means clustering. In contrast, a SVM
with the same RBF kernel will automatically determine the
number and location of the centers, as well as the weights
and threshold that minimize an upper bound on the expected
risk. Recently, Evgeniouet al. [11] have shown that both
SVMs and RBF networks can be formulated under a unified
framework in the context of Vapnik’s theory of statistical
learning [21]. As such, SVMs provide a more systematic
approach to classification than classical RBF and various
other neural networks.

3.3 Fisher Linear Discriminant

Fisher Linear Discriminant (FLD) is an example of
a class specific subspace method that finds the optimal
linear projection for classification. Rather than finding
a projection that maximizes the projected variance as in
principal component analysis, FLD determines a projection,
y =WT

F x, that maximizes the ratio between the between-
class scatter and the within-class scatter. Consequently,
classification is simplified in the projected space.

Consider ac-class problem, with the between-class scat-
ter matrix given by

SB =

cX

i=1

Ni(�i � �)(�i � �)
T

and the within-class scatter matrix by

SW =
cX

i=1

X

xk2Xi

(xk � �i)(xk � �i)
T

where� is the mean of all samples,�i is the mean of class
i, andNi is the number of samples in classi. The optimal
projectionWF is the projection matrix which maximizes
the ratio of the determinant of the between-class scatter to
the determinant of the within-class scatter of the projections

WF = argmax
W

jWTSBWj

jWTSWWj
= [w1 w2 : : : wm]

where fwiji = 1; 2; : : : ;mg is the set of generalized
eigenvectors ofSB andSW , corresponding to them largest
generalized eigenvaluesf�iji = 1; 2; : : : ;mg. However,
the rank ofSB is c � 1 or less since it is the sum ofc
matrices of rank one or less. Thus, the upper bound onm

is c � 1. To avoid the singularity, one can apply PCA first
to reduce the dimension of the feature space toN � c, and
then use FLD to reduce the dimension toc � 1. This two-
step procedure is used in computing “FisherFaces” [1], for
example. In our experiments, we used a single Gaussian to
model the distributions of male and female classes in the
resulting one dimensional space. The class membership
of a sample was then determined using the maximuma
posterioriprobability, or equivalently by a likelihood ratio
test.

3.4 Linear and Quadratic Classi�ers

The decision boundary of a quadratic classifier is defined
by a quadratic form inx, derived through Bayesian error
minimization. Assuming that the distribution of each class
is Gaussian, the classifier output is given by

f(x) = 1

2
(x� �

1
)T��1

1
(x� �

1
)�

1

2
(x� �

2
)T��1

2
(x� �

2
) + 1

2
ln j�1j

j�2j
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Figure 2. Face alignment system

Figure 3. Some processed FERET faces.

where�i and�i (i = 1; 2) are the mean and covariance
matrix of the respective Gaussian distributions.

A linear classifier is a special case of the quadratic
form, based on the assumption that�1 = �2 = �, which
simplifies the discriminant to

f(x) = (�
2
� �

1
)��1

x+
1

2
(�T

1
�
�1
�
1
� �T

2
�
�1
�
2
)

For both classifiers, the sign off(x) determines class
membership and is also equivalent to a likelihood ratio test.

4 Experiments

In our study, 256-by-384 pixel FERET “mug-shots”
were pre-processed using an automatic face-processing sys-
tem which compensates for translation, scale as well as
slight rotations. Shown in Figure 2, this system is described
in detail in [15] and uses maximum-likelihood estimation
for face detection, affine warping for geometric shape
alignment and contrast normalization for ambient lighting
variations. The resulting output “face-prints” in Figure 2
were standardized to 80-by-40 (full) resolution. These
“face-prints” were further sub-sampled to 21-by-12 pixel
“thumbnails” for our low resolution experiments. Figure 3
shows a few examples of processed face-prints (note that
these faces contain little or no hair information). A total
of 1755 thumbnails (1044 males and 711 females) were
used in our experiments. For each classifier, the average
error rate was estimated with 5-fold cross validation (CV)
— i.e., a 5-way dataset split, with 4/5th used for training
and 1/5th used for testing, with 4 subsequent rotations. The
average size of the training set was 1496 (793 males and
713 females) and the average size of the test set was 259
(133 males and 126 females).

Table 1. Experimental results with thumbnails.

Classifier Error Rate
Overall Male Female

SVM with Gaussian RBF kernel 3.38% 2.05% 4.79%
SVM with cubic polynomial kernel 4.88% 4.21% 5.59%
Large ensemble-RBF 5.54% 4.59% 6.55%
Classical RBF 7.79% 6.89% 8.75%
Quadratic classifier 10.63% 9.44% 11.88%
Fisher linear discriminant 13.03% 12.31% 13.78%
Nearest neighbor 27.16% 26.53% 28.04%
Linear classifier 58.95% 58.47% 59.45%

4.1 Machine Classi�cation

The SVM classifier was first tested with various kernels
in order to explore the space of possibilities and perfor-
mance. A Gaussian RBF kernel was found to perform the
best (in terms of error rate), followed by a cubic polynomial
kernel as second best. In the large ensemble-RBF exper-
iment, the number of radial bases was incremented until
the error fell below a set threshold. The average number
of radial bases in the large ensemble-RBF was found to be
1289 which corresponds to 86% of the training set. The
number of radial bases for classical RBF networks was
heuristically set to 20 prior to actual training and testing.
Quadratic, Linear and Fisher classifiers were implemented
using Gaussian distributions and in each case a likelihood
ratio test was used for classification. The average error rates
of all the classifiers tested with 21-by-12 pixel thumbnails
are reported in Table 1 and summarized in Figure 4.

0 10 20 30 40 50 60

Linear classifier

Nearest neighbor

Fisher linear discriminant

Quadratic classifier

Classical RBF

Large ensemble of RBF

SVM w/ cubic poly. kernel

SVM w/ RBF kernel

Error Rate

Figure 4. Error rates of various classi�ers

The SVMs out-performed all other classifiers, although
the performance of large ensemble-RBF networks was close
to SVMs. However, nearly 90% of the training set was
retained as radial bases by the large ensemble-RBF. In
contrast, the number of support vectors found by both
SVMs was only about 20% of the training set. We also
applied SVMs to classification based on high resolution
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images. The Gaussian and cubic kernel SVMs performed
equally well at both low and high resolutions with only
a slight 1% error rate difference. Figure 5 shows three
pairs of opposite (male and female) support faces from an
actual SVM classifier. This figure is, of course, a crude low-
dimensional depiction of the optimal separating hyperplane
(hyper-surface)and its associated margins (shown as dashed
lines). However, the support faces shown are positioned in
accordance with their basic geometry. Each pair of support
faces across the boundary was the closest pair of images
in the projected high dimensional space. It is interesting
to note not only the visual similarity of a given pair but
also their androgynous appearance. Naturally, this is to be
expected from a face located near the boundary of the male
and female domains. As seen in Table 1, all the classifiers
tested had higher error rates in classifying females, most
likely due to the less prominent and distinct facial features
present in female faces.

4.2 Human Classi�cation

In order to calibrate the performance of SVM classifiers,
human subjects were also asked to classify gender using
both low and high resolution images. A total of 30 subjects
(22 males and 8 females) ranging in age from mid-20s to
mid-40s participated in an experiment with high resolution
images and 10 subjects (6 males and 4 females) with low
resolution images. All subjects were asked to classify the
gender of 254 faces (presented in random order) as best as
they could without time constraints. Although these tests
were not as comprehensive as the machine experiments, the
test set used with humans was identical to one of the 5-fold
CV partitions used in Section 4.1.

Table 2. Human error rates

Gender of Error Rate
human subject High resolution Low resolution

Male 7.02% 30.87%
Female 5.22% 30.31%
Combined 6.54% 30.65%
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Figure 6. SVM vs. Human performance

The human error rates obtained in our study are tabulated
in Table 2. Comparing Tables 1 and 2, it is clear that SVMs
also perform better than humans with both low and high
resolution faces — this is more easily seen in Figure 6.
These results suggest that the concept of gender is more
accurately modeled by SVMs than any other classifier. It
is not surprising that human subjects perform better with
high resolution images than with low resolution images.
SVM performance, however, was mostly unaffected by the
change in resolution.

Figure 7 shows the top 5 mistakes made by human
test subjects (the true gender is F-M-M-F-M from left to
right). Our results also indicated that there was a degree
of correlation between the mistakes made by SVMs and
those made by humans. Faces misclassified by SVMs
were almost always misclassified by humans as well (for
all the SVM mistakes, the average human error rate was
more than 30%). On the other hand, the converse was
not generally found to be true (humans made different
mistakes than SVMs). Finally, we note that SVM classifiers
performed better than any single human test subject, at
either resolution.

Figure 7. Top �ve human misclassi�cations



5 Discussion

In this paper we have presented a comprehensive eval-
uation of various classification methods for determination
of gender from facial images. The non-triviality of this
task (made even harder by our “hairless” low resolution
faces) is demonstrated by the fact that a linear classifier
had an error rate of 60% (i.e., worse than a random coin
flip). Furthermore, an acceptable error rate (< 5%) for the
large ensemble-RBF network required storage of 86% of
the training set (SVMs required about 20%). Storage of the
entire dataset in the form of the nearest-neighbor classifier
yielded too high an error rate (30%). Clearly, SVMs
succeeded in the difficult task of finding a near-optimal
gender partition in face space with the added economy of
a small number of support faces.

The comparison of machinevs. human performance,
shown in Figure 6, indicates that SVMs with low resolution
images actually do better (3.4%) than human subjects with
high resolution images (6.5%). This can be partly explained
by the fact that hair cues (mostly missing in our dataset)
are important for human gender discrimination. The fact
that human performance degrades with lower resolution is
not too surprising: as humans, our lifetime of “training” in
gender classification has been carried out with moderate-
to-high resolution stimuli. The various machine classifiers,
on the other hand, werere-trainedfor each resolution. The
relative invariance of SVMs to input resolution is due to
the fact that their complexity (hence performance) depends
primarily on the number of training samples andnot their
dimension [21].

Given the relative success of previous studies with low
resolution faces it is re-assuring that 21-by-12 faces (or
even 8-by-6 faces [20]) can in fact be used for reliable
gender classification. Unfortunately, most of the previous
studies used datasets of relatively few faces (and even
fewer human subjects to test them on). The most directly
comparable study to ours is that of Guttaet al. [13], which
also used FERET faces. With a dataset of 3000 faces at
a resolution of 64-by-72, their hybrid RBF/Decision-Tree
classifier achieved a 4% error rate. In our study, with 1800
faces at a resolution of 21-by-12, a Gaussian kernel SVM
was able to achieve a 3.4% error rate. Both studies use
extensive cross validation to estimate the error rates. Given
our results with SVMs, it is clear that better performance at
even lower resolutions is made possible with this learning
technique.
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